
2025年秋季学期《编译原理和技术》

寄存器分配

程序如何在计算机上执行的？

寄存器

缓存

内存

磁盘

计算单元
（龙芯CPU）

存储单元
（长鑫内存、国科微固态硬盘）

程序如何在计算机上执行的？

寄存器

缓存

内存

磁盘

读取速度
（指令周期）

3

20

5M

8K

40M

512G

10T

计算单元
（龙芯CPU）

存储单元
（长鑫内存、国科微固态硬盘）

1

容量
（字节）

程序如何在计算机上执行的？

寄存器

缓存

内存

磁盘

读取速度
（指令周期）

3

20

5M

8K

40M

512G

10T

计算单元
（龙芯CPU）

存储单元
（长鑫内存、国科微固态硬盘）

1

容量
（字节）

程序如何在计算机上执行的？

寄存器

缓存

内存

磁盘

读取速度
（指令周期）

3

20

5M

8K

40M

512G

10T

计算单元
（龙芯CPU）

存储单元
（长鑫内存、国科微固态硬盘）

1

容量
（字节）

程序如何在计算机上执行的？

寄存器

缓存

内存

磁盘

读取速度
（指令周期）

3

20

5M

8K

40M

512G

10T

计算单元
（龙芯CPU）

存储单元
（长鑫内存、国科微固态硬盘）

1

容量
（字节）

•寄存器容量和个数十分有限

•受限于电源功耗等因素

•为了编程简单，高级语言假设可以

使用无限多个寄存器
龙芯

寄存器资源管理十分重要
架构 32位

ARM 15

Intel x86 8

MIPS 32

RISC-V 16/32

LoongArch 32+32

程序片段:
t1 = 0
t2 = t1- 5
t3 = t1 + t2
t4 = t2 * t3
t5 = t3 – t4
… …

t1
t2
.
.
.
tꝏ

竞争
寄存器的使用

R1
R2
.
.
.
R32

•任务目标：

•在不改变程序行为的前提下，将同一个寄存器分配给多个变量

•约束条件：

•同一时刻，一个寄存器只能被一个变量占用

•寄存器占满后，新的使用申请将选择一个寄存器，移出其所存储的变

量，放回内存（成为Spill，产生较大的开销）

•换入换出寄存器的开销尽可能小

寄存器分配

寄存器分配算法的演进

Open64
Hotspot
Server

LLVM
Hotspot
Client

Turbofan

Dalvik GraalVM

ART

线性扫描

图着色 GCC

分配效果非常好、但运行时间长、常见于传统编译器。

算法运行时间很短，分配效果接近图着色、常见于现代编译器。

1985 1990 1995 2000 2005 2010 2015 2020

e = d + a

f = b + c

f = f + b

if e == 0 goto _L0

d = e + f

goto _L1

_L0: d = e – f

_L1: g = d

举例——寄存器线性扫描分配

a

b

c

d

e

f

g

仅有4个可用的寄存器

R1 R2 R3 R4

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e == 0 goto _L0

d = e + f

goto _L1

_L0: d = e – f

_L1: g = d

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e == 0 goto _L0

d = e + f

goto _L1

_L0: d = e – f

_L1: g = d

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c d

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c d

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c d e

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c d e f

寄存器线性扫描分配——变量存活区间
{a,b,c,d}
e = d + a
{b,c,e}

{b,c,e}
f = b + c
{b,e,f}

{b,e,f}
f = f + b

{e,f}

{e,f}
d = e + f

{d}

{e,f}
d = e - f

{d}

{d}
g = d
{g}

e = d + a

f = b + c

f = f + b

if e==0 goto _L0

d = e + f

goto _L1

_L0: d = e - f

_L1: g = d

a b c d e f g

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

寄存器线性扫描——贪心分配策略

a b c d e f g

R1 R2 R3 R4

•寄存器是宝贵的计算机资源，需要合理利用和分配

•寄存器分配主要有线性扫描和图着色两类算法

•前者比后者性能更好，应用更加广泛

•线性扫描需要借助于变量存活区间的分析

•需要数据流分析的抽象

本节小结

•延伸阅读：

•线性扫描算法：

• Linear Scan Register Allocation for the Java HotSpot™Client Compiler

•图着色算法：

• Register allocation & spilling via graph coloring

拓展与思考

2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！

