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寄存器分配
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•寄存器容量和个数十分有限

•受限于电源功耗等因素

•为了编程简单，高级语言假设可以

使用无限多个寄存器
龙芯

寄存器资源管理十分重要
架构 32位

ARM 15

Intel x86 8

MIPS 32

RISC-V 16/32

LoongArch 32+32

程序片段:
t1 = 0
t2 = t1- 5
t3 = t1 + t2
t4 = t2 * t3
t5 = t3 – t4
… … 

t1
t2
.
.
.
tꝏ

竞争
寄存器的使用
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R2
.
.
.
R32



•任务目标：

•在不改变程序行为的前提下，将同一个寄存器分配给多个变量

•约束条件：

•同一时刻，一个寄存器只能被一个变量占用

•寄存器占满后，新的使用申请将选择一个寄存器，移出其所存储的变

量，放回内存（成为Spill，产生较大的开销）

•换入换出寄存器的开销尽可能小

寄存器分配



寄存器分配算法的演进

Open64
Hotspot
Server

LLVM
Hotspot
Client

Turbofan

Dalvik GraalVM

ART

线性扫描

图着色 GCC

分配效果非常好、但运行时间长、常见于传统编译器。

算法运行时间很短，分配效果接近图着色、常见于现代编译器。
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e = d + a

f = b + c

f = f + b

if e == 0 goto _L0

d = e + f

goto _L1

_L0: d = e – f

_L1: g = d

举例——寄存器线性扫描分配
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仅有4个可用的寄存器

R1 R2 R3 R4
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•寄存器是宝贵的计算机资源，需要合理利用和分配

•寄存器分配主要有线性扫描和图着色两类算法

•前者比后者性能更好，应用更加广泛

•线性扫描需要借助于变量存活区间的分析

•需要数据流分析的抽象

本节小结



•延伸阅读：

•线性扫描算法：

• Linear Scan Register Allocation for the Java HotSpot™Client Compiler 

•图着色算法：

• Register allocation & spilling via graph coloring

拓展与思考
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一起努力
打造国产基础系统软件体系！


