
2025年秋季学期《编译原理和技术》

面向目标机器的代码优化
——指令并行与调度

编译器的基本步骤

前情回顾

Lexical
Analyzer

词法
分析器

Syntax
Analyzer

语法
分析器

Interm.
Code Gen.
中间代码
生成器

Code
Gen.
代码

生成器

Code
Opt.
代码

优化器

Token
Stream
记号流

Syntax
Tree

语法树

Interm.
Rep.
中间
表示

前端

Source
code
源程序

Target
code
目标
程序

Interm.
Code Opt.
中间代码
优化器

Interm.
Rep.
中间
表示

Target
code
目标
程序

中端 后端

编译器的基本步骤与实验安排

前情回顾

Lexical
Analyzer

词法
分析器

Syntax
Analyzer

语法
分析器

Interm.
Code Gen.
中间代码
生成器

Code
Gen.
代码

生成器

Code
Opt.
代码

优化器

Token
Stream
记号流

Syntax
Tree

语法树

Interm.
Rep.
中间
表示

前端

Source
code
源程序

Target
code
目标
程序

Interm.
Code Opt.
中间代码
优化器

Interm.
Rep.
中间
表示

Target
code
目标
程序

中端 后端

技术
方案

Flex Bison LLVM/LightIR LoongArch64

实验 Lab0 Lab1 Lab2 Lab3Lab4

编译器的基本步骤与实验安排

前情回顾

Lexical
Analyzer

词法
分析器

Syntax
Analyzer

语法
分析器

Interm.
Code Gen.
中间代码
生成器

Code
Gen.
代码

生成器

Code
Opt.
代码

优化器

Token
Stream
记号流

Syntax
Tree

语法树

Interm.
Rep.
中间
表示

前端

Source
code
源程序

Target
code
目标
程序

Interm.
Code Opt.
中间代码
优化器

Interm.
Rep.
中间
表示

Target
code
目标
程序

中端 后端

技术
方案

Flex Bison LLVM/LightIR LoongArch64

实验 Lab0 Lab1 Lab2 Lab3Lab4

目标：优化生成的机器代码，与机器无关的优化不同，这一层级
的信息是IR层无法获取的。

面向目标机器的代码优化十分重要，但往往很难实现:

◼难以跨机器架构复用

◼难以跨语言复用

面向目标机器的代码优化

减少操作数量

◼算术操作、内存访问等

用代价小的操作替换代价高的操作

◼例如：4-cycle 乘法 与 1-cycle 移位运算

降低缓存缺失（Cache miss）

◼覆盖数据和指令的访问

并行计算

◼单线程内部的指令调度

◼跨线程的并行执行

面向目标机器的代码优化 – 种类

执行时间的计算公式：
Execution time = Operation count * Machine cycles per operation

冯诺依曼体系结构

现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码

指令控制单元(ICU)

◼Fetch control

➢包含分支预测的功能

◼Instruction decode

➢从instruction cache (icache)中
读取指令，然后翻译为一组微操
作

➢例如，addq %rax, %rdx转换为
单个微操作

➢例如，addq %rax, 8(%rdx)转
换为内存读取、加法和内存写入
三个微操作。

现代处理器架构

现代处理器架构

执行单元(EU, Execution Unit)

◼接收来自ICU的微操作，分发到各

个功能单元执行。

◼Load和Store单元

➢ 包含一个加法器计算地址，和data cache
(dcache)交互

◼Branch单元

➢ 预测结果会保存在EU内的队列中，若预测

错误，则会丢弃保存的执行结果，并通知

Fetch Control单元，之后才能获取正确的

指令

◼其它各种功能单元

➢ 整数运算、浮点乘、整数乘、分支等等

现代处理器架构

现代处理器架构

现代处理器一般是乱序且
是超标量的。

◼超标量: 通过实现多个硬件单

元，可以在每个时钟周期执

行多个操作

◼乱序: 指令执行的顺序和二进

制代码中的顺序不一定相同

现代处理器架构：乱序 + 超标量

现代处理器架构

现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7

ID RR ALU RW

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

数据未
准备好

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

流水线
阻塞

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

流水线
阻塞

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

可能的优化

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t0, $t0, $t7 # $t0 = $t0 + $t7

ID RR ALU RW

节省两个
时钟周期

现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码

优化的起源

◼由于处理器流水线并行机制，指令的执行顺序对性能有较大影响。

指令调度

◼重排机器代码指令，旨在最小化执行特定指令序列所需的时钟周期数。

◼任意编译器均支持指令调度。

理论和技术挑战

◼然而，在处理器流水线上执行的顺序代码内含着一些指令之间的依赖关

系，在指令调度期间执行的任何转换都必须保留这些依赖关系，以维护

被调度代码的逻辑。

指令调度(Instruction scheduling)

read-after-write，RAW

◼当一条指令读取另一条指令写入的结果时，会产生写后读
相关性，读指令必须在写指令一定时钟周期后再读取而不
会产生阻塞。

write-after-read，WAR

◼当一条指令写在另一条指令的操作数上时，会产生反向依
赖或称读后写依赖。 读指令必须在写指令之前经过适当
的周期数才能安全读取，而不阻塞写指令。

write-after-write，WAW

◼如果两条指令写入同一个目标，就会产生单个输出或写后
写依赖关系

三种数据依赖关系

分析数据依赖关系

t0 = t1 + t2

t1 = t0 + t1

t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

分析数据依赖关系

t1 = t0 + t1

t0 = t1 + t2

t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

分析数据依赖关系

t1 = t0 + t1

t0 = t1 + t2

t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

分析数据依赖关系

t1 = t0 + t1

t0 = t1 + t2

t3 = t2 + t4

t0 = t1 + t2t5 = t3 + t4

t6 = t2 + t7

一个基本块的指令数据依赖图：

◼每个节点表示单个机器指令

◼每一条边代表了两条指令间存在数据依赖，否则就没有依赖

依赖图是一个有向无环图，directed acyclic graph (DAG)

◼Directed: 代表了计算的顺序

◼Acyclic: 不能存在环状依赖（why？）

合法的指令调度

◼条件：一条指令不能先于他的祖先节点执行

实现方法

◼对依赖图进行拓扑排序(topological sort)

指令数据依赖图[HennessyGross，1983]

John L. Hennessy and Thomas Gross. 1983. Postpass Code
Optimization of Pipeline Constraints. ACM Trans. Program. Lang.
Syst. 5, 3 (July 1983), 422–448. https://doi.org/10.1145/2166.357217

延伸阅读

John L. Hennessy David Patterson

2017年，Hennessy和Patterson共
同获得图灵奖。

获奖演说：

◼A New Golden Age for Computer
Architecture: Domain-Specific
Hardware/Software Co-Design,
Enhanced Security, Open Instruction
Sets, and Agile Chip Development

现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

t1 = t0 + t1

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

t1 = t0 + t1

t0 = t1 + t2

t6 = t2 + t7

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

t1 = t0 + t1

t0 = t1 + t2

t6 = t2 + t7

数据依赖指导下的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

t1 = t0 + t1

t0 = t1 + t2

t6 = t2 + t7

t3 = t2 + t4

t5 = t3 + t4

t0 = t1 + t2

t1 = t0 + t1

t0 = t1 + t2

t6 = t2 + t7

数据依赖图可能有许多有效的拓扑排序。

◼该如何选择一种能与流水线完美配合的排序方式呢？

寻找最快的指令时间表是众所周知的 NP 难题。

◼不要指望很快就能找到多项式时间算法！

在实践中使用启发式方法

1. 将可以不受干扰地运行完成的指令安排在会造成干扰的指令之前。

2. 将依赖关系较多的指令安排在依赖关系较少的指令之前。

3. 对 DAG 进行加权调整！(边的权重为指令等待时间)

指令调度的空间

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

0

0

0

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

0

0

0

+3

+3

+3
+3

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

0

0

0

+3

+3

+3
+3

ID RR ALU RW

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

0

0

0

+3

+3

+3
+3

ID RR ALU RW

t0 = t1 + t2

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

0

3

3

+3

+3

+3
+3

ID RR ALU RW

t0 = t1 + t2

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

3

3

+3

+3

ID RR ALU RW

t0 = t1 + t2

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

3

3

+3

+3

ID RR ALU RW

t0 = t1 + t2

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

0

0

3

3

+3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

0

4

0

3

3

+3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

0

3

3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

0

3

3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

0

3

3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

0

3

3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4 3

3

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4 3

6

+3

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

6

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7

4

6

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7 6

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7 6

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

升级版的指令调度

t1 = t0 + t1

t0 = t1 + t2t3 = t2 + t4

t0 = t1 + t2

t5 = t3 + t4

t6 = t2 + t7 6

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

不同调度之间的性能差距

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

ID RR ALU RW

现代优化编译器可以进行更积极的调度，以获得巨大的性能提升。

一种强大的技术：循环展开(loop unrolling)

◼一次展开多个循环迭代。

◼使用前面介绍的调度算法更智能地调度指令。

◼可以在循环迭代中找到流水线级并行性。

更多高级的调度

通过并行执行来自不同循
环体的指令来加快循环程
序的执行速度;

在前一个循环体未结束前
启动下一个新的循环体，
来达成循环体时间上的并
行性;

相比于简单的展开循环,软
件流水线在优化资源使用
的同时保持代码的简洁。

软件流水线(Software pipeline)

现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码

科技前沿——大模型并行训练

持续增长的算力

在后摩尔时代，GPU依然保
持每年50%的算力增长幅度

爆发式增长的数据

自然语言处理领域的训练数
据集，从200MB增长到40TB

爆发式变大的模型

自然语言处理领域的模型，
大小以每年20倍的速度增长

参数规模与任务复杂度的快速增长

大模型功能的提升伴随着大模型参数和上下文长度的指数级增长

世界范围内千模涌起、竞争激烈
大模型体量已突破万亿参数

长上下文窗口增强模型推理能力
最新模型可一次性处理10部《红楼梦》的信息量

模型
上下文长度
（token数）

约合汉字 发布时间

GPT-4.1 100万 70万 2025年4月

Gemini 1.5
Pro

200万 150万 2024年2月

Claude 20万 15万 2024年

DeepSeek 12.8万 12.8万 2025年

Kimi 200万 200万 2025年

通义千问 1000万 1000万 2025年

第三次AI浪潮催生智能算力需求爆发

大模型对智能算力需求爆炸式增长，算力已经成为发展AI大模型的制约

智能算力需求每3.4月翻一倍
增幅远超摩尔定律

全球范围内的AI基础设施军备竞赛

3 10
20

100

国内 xAI OpenAI 谷歌

单集群xPU数量（万）

能源挑战：电力需求指数级攀升

相当于三峡电站
7.2年的发电量

Kimi

实现通用人工智能AGI的算力困境

现有AI大模型的参数量与人脑的参数量还有三个数量级的差距
未来智能算力规模还要提升至少三个数量级

◼ 人脑信息处理：千万亿（1000，000 B）突触（类比于参数）

观点1：OpenAI认为，
模型参数量与计算量增幅
的最佳比值为1:2 [1] 。

观点2：DeepMind认为，
模型参数量与计算量增幅
的最佳比值为1:3 [2] 。

[1] Scaling laws for neural language models[J]. arXiv preprint arXiv:2001.08361, 2020.
[2] Training compute-optimal large language models[J]. arXiv preprint arXiv:2203.15556, 2022.

训练过程中“四大”内存占用

X

MatMul0

MatMul1

MatMul2

MatMul3

W0

W1

W2

W3

Loss

L=f(Y3)

MatMul3

MatMul2

MatMul1

MatMul0

Δ𝑊3

Δ𝑊2

Δ𝑊1

Δ𝑊0

Δ𝑌3

Δ𝑌2

Δ𝑌1

Δ𝑌0
O𝑝𝑡0

O𝑝𝑡1

O𝑝𝑡2

O𝑝𝑡3

𝑌0

𝑌1

𝑌2

𝑌3

中间数据

参数

梯度

优化器状态

以GPT为例分析训练内存占用情况

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层

以GPT为例分析训练内存占用情况

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层
训练1750亿参数的GPT-3的配置

参数 缩写 参考值

hidden size h 12288

sequence length s 2048

number of layers L 96

number of attention heads a 96

mini-batch size b 128

vocabulary size v 50000

以GPT为例分析训练内存占用情况

训练1750亿参数的GPT-3的配置

参数 缩写 参考值

hidden size h 12288

sequence length s 2048

number of layers L 96

number of attention heads a 96

mini-batch size b 128

vocabulary size v 50000

训练1750亿参数的GPT-3的内存占用

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层

内存占用类型 占用大小 参考值

参数 + 梯度 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1) × 4 650 GB

优化器状态量 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1) × 12 1950 GB

中间数据 𝐿 5𝑎𝑠2 + 34ℎ𝑠 + 5ℎ𝑠 + 4𝑠𝑣 × 4𝑏 32895 GB

以GPT为例分析训练内存占用情况

显卡型号 发售年份 显存容量 参考价格

H100 2023 80GB $36550

A100 2020 40/80GB
$9745
(40GB)

V100 2017
16/32

GB
$4392
(16GB)

P100 2016 16GB $557

需要至少440/880张A100才能满足GPT-
3训练过程中的内存占用

训练1750亿参数的GPT-3的内存占用
内存占用类型 占用大小 参考值

参数 + 梯度 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1) × 4 650 GB

优化器状态量 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1) × 12 1950 GB

中间数据 𝐿 5𝑎𝑠2 + 34ℎ𝑠 + 5ℎ𝑠 + 4𝑠𝑣 × 4𝑏 32895 GB

国外各大机构的A100卡数

如何用更少的硬件资源训练大模型成为关键问题之一？

相关工作--流水线并行

GPipe, NIPS 2019, Google：将mini-batch进
一步拆分为若干micro-batch，但仍有大量气
泡

PipeDream, SOSP 2019, Microsoft：允许后续
micro-batch异步提前执行，但使用的参数比较陈
旧

DAPPLE, PPoPP 2021, Alibaba：修改执行序，
交叉执行不同micro-batch的前向和反向计算，
减少气泡，减少保存的中间数据数量

• 优点：
• 能有效减少单个设备的内存占用量

• 缺点：
• 不可避免地引入通信，且通信在关键路径上
• 扩展上限受到模型本身层数的限制

Device-0

Device-1

Device-2

Device-3

相关工作--张量并行

Megatron-LM, arXiv 2020, NVIDIA：
通过先验知识对Transformer层切分做
张量并行

• 优点：
• 有效减少单个设备的内存占用
• 可以训练单个设备无法训练的层

• 缺点：
• 需要实现分布式算子，以及插入相应

通信算子，即重构代码
• 计算和传输顺序执行，无法相互隐藏
• 通信量大，对机内带宽需求高

Device-0

Device-1

Device-2

Device-3

相关工作--数据并行+去冗余

Device-0

Device-1

Device-2

Device-3

param
grad
opt.

status

ZeRO, arXiv 2020, Microsoft：对多种数据
做切分，做到了数据并行时零数据冗余

• 优点：
• 数据并行简单易扩展
• ZeRO带来的通信不在关键路径上，可以隐

藏在计算之下
• 缺点：

• 通信量大，对机内、机间带宽需求大

其中，𝜑表示模型大小，𝐾表示优化器状态重复度，𝑁𝑑是数据并行度

相关工作--Ring AllReduce

a1Node
1

Computed gradients

p: 计算节点数量
m: 传输数据量
每个节点的传输开销：

𝒎

𝒑
⋅ 𝟐(𝒑 − 𝟏)

Node
2

Node
3

a1 b1 c1+c3

a1+a2 b2 c2

a3 b2+b3 c3

b1 c1

a2 b2 c2

a3 b3 c3

a1 b1+b2+b
3 c1+c3

a1+a2 b2 c1+c2+c
3

a1+a2+a
3 b2+b3 c3

a1+a2+a
3

b1+b2+b
3 c1+c3

a1+a2 b1+b2+b
3

c1+c2+c
3

a1+a2+a
3 b2+b3 c1+c2+c

3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

Scatter-Reduce

AllGather

[1] Bringing HPC Techniques to Deep Learning, https://andrew.gibiansky.com/blog/machine-
learning/baidu-allreduce/

A
llr

ed
u

ce
0

A
llr

ed
u

ce
3

A
llr

ed
u

ce
2

A
llr

ed
u

ce
1

训练参数设定
• 数据并行维度：2路
• 流水并行维度：4个stage
• 张量并行维度：4个partition

3D并行训练

用32GPU 3D并行训练32 layer transformer模型

A
llr

ed
u

ce
0

A
llr

ed
u

ce
3

A
llr

ed
u

ce
2

A
llr

ed
u

ce
1

DP
DP

DP
DP

训练参数设定
• 数据并行维度：2路
• 流水并行维度：4个stage
• 张量并行维度：4个partition

3D并行训练

问题：梯度通信不足以被反向计算完全隐藏

相关工作--优先级调度

Global Barrier

问题：梯度通信不足以被反向计算完全隐藏

ByteScheduler, SOSP19

相关工作--优先级调度

核心技术：梯度切分、抢占式优先级调度，打破每轮迭代的Global Barrier

技术优势：

• 先使用的梯度优先抢占网络资源

• 下一轮前向计算提前触发

Global Barrier

相关工作--优化器卸载

• 优点：
• 能将显卡上大量的优化器状态量
• 卸载到CPU侧

• 缺点：
• CPU侧内存可能会成为可训练模型

大小的瓶颈
• 显著增加了参数更新的开销

ZeRO-Offload, ATC 2021, Microsoft：
将优化器的状态与计算卸载到CPU

相关工作--内存交换

Tensor1

Device

Host

Tensor1 Op1 Op2Tensor2

Op2-
BP

Op1-
BP

Δ𝑌2Δ𝑌1

Swap in

Tensor2Tensor1

Swap out Swap out

Swap in

• 优点：
• 适用于所有类型的张量
• 可显著增加可训练模型的大小

• 缺点：
• 受限于PCIe带宽，交换过多内存会影响端到端训练速度

vDNN, MICRO 2016,
NVIDIA：将张量交换到
CPU侧内存以降低GPU
侧的显存负载

我们课题组围绕AI并行计算的科研成果

科研平台：国家高性能计算中心（合肥）、处理器芯片全国重点实验室（科教融合基地）、类脑智能技术及应用国家
工程实验室、合肥综合性国家科学中心人工智能研究院、中国科学技术大学国家人工智能产教融合平台

以

数

据

为

中

心

的

大

模

型

高

性

能

并

行

训

练

系

统

③ 针对大模型数据搬运的并行通信优化技术

基于特征缓存的局
部性通信优化方法
FAST23,VLDB24

基于细粒度一致性的
强弱混合同步机制

VLDB21,EuroSys24

基于压缩的传算协
同集合通信方法
NSDI25,SOSP21

② 针对大模型训练数据的高效存取技术

面向海量小文件的
分布式元数据服务
EuroSys23,SOSP25

基于异构介质的高性
能单机存储引擎

FAST21,EuroSys23

支持快速原地更新
的单机向量索引

SOSP23

① 针对大模型状态数据的高效内存管理机制

内存节省的流水并
行训练方法

HPCA23,SOSP23

内存感知的模型切
分与调度方法

HPCA24,OSDI24

基于混合介质的分离
式内存管理方法

VLDB21,ASPLOS23
① 内存墙

③ 通信墙

② 存储墙

挑战

核心任务
提升并行效率

关键问题

驱
动

分
解

完
成

学术创新：

➢ 厘清了数据组织、分布、搬
运、同步对并行的影响机理

➢ 提出了以数据为中心的算存
网多维协同新系统架构

能力突破：

➢ 高速内存不足时仍可以算
➢ 训练数据太多时仍管得好
➢ 网络带宽不高时仍同步快
应用场景：

Wanna learn more?

系统前沿reading group
每周周二晚上信智楼meetup

零食水果
B站视频专辑

2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！

