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面向目标机器的代码优化
——指令并行与调度
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目标：优化生成的机器代码，与机器无关的优化不同，这一层级
的信息是IR层无法获取的。

面向目标机器的代码优化十分重要，但往往很难实现:

◼难以跨机器架构复用

◼难以跨语言复用

面向目标机器的代码优化



减少操作数量

◼算术操作、内存访问等

用代价小的操作替换代价高的操作

◼例如：4-cycle 乘法 与 1-cycle 移位运算

降低缓存缺失（Cache miss）

◼覆盖数据和指令的访问

并行计算

◼单线程内部的指令调度

◼跨线程的并行执行

面向目标机器的代码优化 – 种类

执行时间的计算公式：
Execution time = Operation count * Machine cycles per operation

冯诺依曼体系结构



现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练
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指令控制单元(ICU)

◼Fetch control

➢包含分支预测的功能

◼Instruction decode 

➢从instruction cache (icache)中
读取指令，然后翻译为一组微操
作

➢例如，addq %rax, %rdx转换为
单个微操作

➢例如，addq %rax, 8(%rdx)转
换为内存读取、加法和内存写入
三个微操作。

现代处理器架构

现代处理器架构



执行单元(EU, Execution Unit)

◼接收来自ICU的微操作，分发到各

个功能单元执行。

◼Load和Store单元

➢ 包含一个加法器计算地址，和data cache 
(dcache)交互

◼Branch单元

➢ 预测结果会保存在EU内的队列中，若预测

错误，则会丢弃保存的执行结果，并通知

Fetch Control单元，之后才能获取正确的

指令

◼其它各种功能单元

➢ 整数运算、浮点乘、整数乘、分支等等

现代处理器架构

现代处理器架构



现代处理器一般是乱序且
是超标量的。

◼超标量: 通过实现多个硬件单

元，可以在每个时钟周期执

行多个操作

◼乱序: 指令执行的顺序和二进

制代码中的顺序不一定相同

现代处理器架构：乱序 + 超标量

现代处理器架构
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处理器流水线

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t5, $t3, $t4 # $t5 = $t3 + $t4

add $t8, $t6, $t7 # $t8 = $t6 + $t7 
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复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1

add $t4, $t3, $t2 # $t4 = $t3 + $t2

add $t7, $t5, $t6 # $t7 = $t5 + $t6

add $t0, $t0, $t7 # $t0 = $t0 + $t7
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复杂的流水线并行

add $t2, $t0, $t1 # $t2 = $t0 + $t1
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可能的优化
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现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练
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优化的起源

◼由于处理器流水线并行机制，指令的执行顺序对性能有较大影响。

指令调度

◼重排机器代码指令，旨在最小化执行特定指令序列所需的时钟周期数。

◼任意编译器均支持指令调度。

理论和技术挑战

◼然而，在处理器流水线上执行的顺序代码内含着一些指令之间的依赖关

系，在指令调度期间执行的任何转换都必须保留这些依赖关系，以维护

被调度代码的逻辑。

指令调度(Instruction scheduling)



read-after-write，RAW

◼当一条指令读取另一条指令写入的结果时，会产生写后读
相关性，读指令必须在写指令一定时钟周期后再读取而不
会产生阻塞。

write-after-read，WAR

◼当一条指令写在另一条指令的操作数上时，会产生反向依
赖或称读后写依赖。 读指令必须在写指令之前经过适当
的周期数才能安全读取，而不阻塞写指令。

write-after-write，WAW

◼如果两条指令写入同一个目标，就会产生单个输出或写后
写依赖关系

三种数据依赖关系
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一个基本块的指令数据依赖图：

◼每个节点表示单个机器指令

◼每一条边代表了两条指令间存在数据依赖，否则就没有依赖

依赖图是一个有向无环图，directed acyclic graph (DAG)

◼Directed: 代表了计算的顺序

◼Acyclic: 不能存在环状依赖（why？）

合法的指令调度

◼条件：一条指令不能先于他的祖先节点执行

实现方法

◼对依赖图进行拓扑排序(topological sort)

指令数据依赖图[HennessyGross，1983]



John L. Hennessy and Thomas Gross. 1983. Postpass Code 
Optimization of Pipeline Constraints. ACM Trans. Program. Lang. 
Syst. 5, 3 (July 1983), 422–448. https://doi.org/10.1145/2166.357217
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数据依赖图可能有许多有效的拓扑排序。

◼该如何选择一种能与流水线完美配合的排序方式呢？

寻找最快的指令时间表是众所周知的 NP 难题。

◼不要指望很快就能找到多项式时间算法！

在实践中使用启发式方法

1. 将可以不受干扰地运行完成的指令安排在会造成干扰的指令之前。

2. 将依赖关系较多的指令安排在依赖关系较少的指令之前。

3. 对 DAG 进行加权调整！(边的权重为指令等待时间)

指令调度的空间
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不同调度之间的性能差距

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

ID RR ALU RW

t0 = t1 + t2

t3 = t2 + t4

t6 = t2 + t7

t1 = t0 + t1

t5 = t3 + t4

t0 = t1 + t2

ID RR ALU RW



现代优化编译器可以进行更积极的调度，以获得巨大的性能提升。

一种强大的技术：循环展开(loop unrolling)

◼一次展开多个循环迭代。

◼使用前面介绍的调度算法更智能地调度指令。

◼可以在循环迭代中找到流水线级并行性。

更多高级的调度



通过并行执行来自不同循
环体的指令来加快循环程
序的执行速度;

在前一个循环体未结束前
启动下一个新的循环体，
来达成循环体时间上的并
行性;

相比于简单的展开循环,软
件流水线在优化资源使用
的同时保持代码的简洁。

软件流水线(Software pipeline)



现代处理器架构

流水线并行的例子

指令调度与数据依赖分析

数据依赖指导下的指令调度

科技前沿——大模型的流水并行训练

本节提纲

分析器
静态
检查器

中间
代码

生成器

中间
代码

记号
流

代码
生成器

符号表

语
法
树

语
法
树

代码
优化

在目标机
器上的高
效可执行

代码



科技前沿——大模型并行训练

持续增长的算力

在后摩尔时代，GPU依然保
持每年50%的算力增长幅度

爆发式增长的数据

自然语言处理领域的训练数
据集，从200MB增长到40TB

爆发式变大的模型

自然语言处理领域的模型，
大小以每年20倍的速度增长



参数规模与任务复杂度的快速增长

大模型功能的提升伴随着大模型参数和上下文长度的指数级增长

世界范围内千模涌起、竞争激烈
大模型体量已突破万亿参数

长上下文窗口增强模型推理能力
最新模型可一次性处理10部《红楼梦》的信息量

模型
上下文长度
（token数）

约合汉字 发布时间

GPT-4.1 100万 70万 2025年4月

Gemini 1.5 
Pro

200万 150万 2024年2月

Claude 20万 15万 2024年

DeepSeek 12.8万 12.8万 2025年

Kimi 200万 200万 2025年

通义千问 1000万 1000万 2025年



第三次AI浪潮催生智能算力需求爆发

大模型对智能算力需求爆炸式增长，算力已经成为发展AI大模型的制约

智能算力需求每3.4月翻一倍
增幅远超摩尔定律

全球范围内的AI基础设施军备竞赛

3 10
20

100

国内 xAI OpenAI 谷歌

单集群xPU数量（万）

能源挑战：电力需求指数级攀升

相当于三峡电站
7.2年的发电量

Kimi



实现通用人工智能AGI的算力困境

现有AI大模型的参数量与人脑的参数量还有三个数量级的差距
未来智能算力规模还要提升至少三个数量级

◼ 人脑信息处理：千万亿（1000，000 B）突触（类比于参数）

观点1：OpenAI认为，
模型参数量与计算量增幅
的最佳比值为1:2 [1] 。

观点2：DeepMind认为，
模型参数量与计算量增幅
的最佳比值为1:3 [2] 。

[1] Scaling laws for neural language models[J]. arXiv preprint arXiv:2001.08361, 2020.
[2] Training compute-optimal large language models[J]. arXiv preprint arXiv:2203.15556, 2022.



训练过程中“四大”内存占用

X

MatMul0

MatMul1

MatMul2

MatMul3

W0

W1

W2

W3

Loss

L=f(Y3)

MatMul3
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MatMul1
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以GPT为例分析训练内存占用情况

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层



以GPT为例分析训练内存占用情况

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层
训练1750亿参数的GPT-3的配置

参数 缩写 参考值

hidden size h 12288

sequence length s 2048

number of layers L 96

number of attention heads a 96

mini-batch size b 128

vocabulary size v 50000



以GPT为例分析训练内存占用情况

训练1750亿参数的GPT-3的配置

参数 缩写 参考值

hidden size h 12288

sequence length s 2048

number of layers L 96

number of attention heads a 96

mini-batch size b 128

vocabulary size v 50000

训练1750亿参数的GPT-3的内存占用

重复堆叠的Transformer层

Embedding层

用于计算Loss的输出层

内存占用类型 占用大小 参考值

参数 + 梯度 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1 ) × 4 650 GB

优化器状态量 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1 ) × 12 1950 GB

中间数据 𝐿 5𝑎𝑠2 + 34ℎ𝑠 + 5ℎ𝑠 + 4𝑠𝑣 × 4𝑏 32895 GB



以GPT为例分析训练内存占用情况

显卡型号 发售年份 显存容量 参考价格

H100 2023 80GB $36550

A100 2020 40/80GB
$9745 
(40GB)

V100 2017
16/32 

GB
$4392 
(16GB)

P100 2016 16GB $557

需要至少440/880张A100才能满足GPT-
3训练过程中的内存占用

训练1750亿参数的GPT-3的内存占用
内存占用类型 占用大小 参考值

参数 + 梯度 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1 ) × 4 650 GB

优化器状态量 (𝐿 12ℎ2 + 13ℎ + ℎ𝑣 + ℎ 𝑠 + 1 ) × 12 1950 GB

中间数据 𝐿 5𝑎𝑠2 + 34ℎ𝑠 + 5ℎ𝑠 + 4𝑠𝑣 × 4𝑏 32895 GB



国外各大机构的A100卡数

如何用更少的硬件资源训练大模型成为关键问题之一？



相关工作--流水线并行

GPipe, NIPS 2019, Google：将mini-batch进
一步拆分为若干micro-batch，但仍有大量气
泡

PipeDream, SOSP 2019, Microsoft：允许后续
micro-batch异步提前执行，但使用的参数比较陈
旧

DAPPLE, PPoPP 2021, Alibaba：修改执行序，
交叉执行不同micro-batch的前向和反向计算，
减少气泡，减少保存的中间数据数量

• 优点：
• 能有效减少单个设备的内存占用量

• 缺点：
• 不可避免地引入通信，且通信在关键路径上
• 扩展上限受到模型本身层数的限制

Device-0

Device-1

Device-2

Device-3



相关工作--张量并行

Megatron-LM, arXiv 2020, NVIDIA：
通过先验知识对Transformer层切分做
张量并行

• 优点：
• 有效减少单个设备的内存占用
• 可以训练单个设备无法训练的层

• 缺点：
• 需要实现分布式算子，以及插入相应

通信算子，即重构代码
• 计算和传输顺序执行，无法相互隐藏
• 通信量大，对机内带宽需求高

Device-0

Device-1

Device-2

Device-3



相关工作--数据并行+去冗余

Device-0

Device-1

Device-2

Device-3

param
grad
opt. 

status

ZeRO, arXiv 2020, Microsoft：对多种数据
做切分，做到了数据并行时零数据冗余

• 优点：
• 数据并行简单易扩展
• ZeRO带来的通信不在关键路径上，可以隐

藏在计算之下
• 缺点：

• 通信量大，对机内、机间带宽需求大

其中，𝜑表示模型大小，𝐾表示优化器状态重复度，𝑁𝑑是数据并行度



相关工作--Ring AllReduce

a1Node 
1

Computed gradients

p: 计算节点数量
m: 传输数据量
每个节点的传输开销：

𝒎

𝒑
⋅ 𝟐(𝒑 − 𝟏)

Node 
2

Node 
3

a1 b1 c1+c3

a1+a2 b2 c2

a3 b2+b3 c3

b1 c1

a2 b2 c2

a3 b3 c3

a1 b1+b2+b
3 c1+c3

a1+a2 b2 c1+c2+c
3

a1+a2+a
3 b2+b3 c3

a1+a2+a
3

b1+b2+b
3 c1+c3

a1+a2 b1+b2+b
3

c1+c2+c
3

a1+a2+a
3 b2+b3 c1+c2+c

3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

a1+a2+a
3

b1+b2+b
3

c1+c2+c
3

Scatter-Reduce 

AllGather

[1] Bringing HPC Techniques to Deep Learning, https://andrew.gibiansky.com/blog/machine-
learning/baidu-allreduce/
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训练参数设定
• 数据并行维度：2路
• 流水并行维度：4个stage
• 张量并行维度：4个partition

3D并行训练



用32GPU 3D并行训练32 layer transformer模型
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训练参数设定
• 数据并行维度：2路
• 流水并行维度：4个stage
• 张量并行维度：4个partition

3D并行训练



问题：梯度通信不足以被反向计算完全隐藏

相关工作--优先级调度

Global Barrier



问题：梯度通信不足以被反向计算完全隐藏

ByteScheduler, SOSP19

相关工作--优先级调度

核心技术：梯度切分、抢占式优先级调度，打破每轮迭代的Global Barrier

技术优势：

• 先使用的梯度优先抢占网络资源

• 下一轮前向计算提前触发

Global Barrier



相关工作--优化器卸载

• 优点：
• 能将显卡上大量的优化器状态量
• 卸载到CPU侧

• 缺点：
• CPU侧内存可能会成为可训练模型

大小的瓶颈
• 显著增加了参数更新的开销

ZeRO-Offload, ATC 2021, Microsoft：
将优化器的状态与计算卸载到CPU



相关工作--内存交换

Tensor1

Device

Host

Tensor1 Op1 Op2Tensor2

Op2-
BP

Op1-
BP

Δ𝑌2Δ𝑌1

Swap in

Tensor2Tensor1

Swap out Swap out

Swap in

• 优点：
• 适用于所有类型的张量
• 可显著增加可训练模型的大小

• 缺点：
• 受限于PCIe带宽，交换过多内存会影响端到端训练速度

vDNN, MICRO 2016, 
NVIDIA：将张量交换到
CPU侧内存以降低GPU
侧的显存负载



我们课题组围绕AI并行计算的科研成果

科研平台：国家高性能计算中心（合肥）、处理器芯片全国重点实验室（科教融合基地）、类脑智能技术及应用国家
工程实验室、合肥综合性国家科学中心人工智能研究院、中国科学技术大学国家人工智能产教融合平台
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③ 针对大模型数据搬运的并行通信优化技术

基于特征缓存的局
部性通信优化方法
FAST23,VLDB24

基于细粒度一致性的
强弱混合同步机制

VLDB21,EuroSys24

基于压缩的传算协
同集合通信方法
NSDI25,SOSP21

② 针对大模型训练数据的高效存取技术

面向海量小文件的
分布式元数据服务
EuroSys23,SOSP25

基于异构介质的高性
能单机存储引擎

FAST21,EuroSys23

支持快速原地更新
的单机向量索引

SOSP23

① 针对大模型状态数据的高效内存管理机制

内存节省的流水并
行训练方法

HPCA23,SOSP23

内存感知的模型切
分与调度方法

HPCA24,OSDI24

基于混合介质的分离
式内存管理方法

VLDB21,ASPLOS23
① 内存墙

③ 通信墙

② 存储墙

挑战

核心任务
提升并行效率

关键问题

驱
动

分
解

完
成

学术创新：

➢ 厘清了数据组织、分布、搬
运、同步对并行的影响机理

➢ 提出了以数据为中心的算存
网多维协同新系统架构

能力突破：

➢ 高速内存不足时仍可以算
➢ 训练数据太多时仍管得好
➢ 网络带宽不高时仍同步快
应用场景：



Wanna learn more?

系统前沿reading group
每周周二晚上信智楼meetup

零食水果
B站视频专辑



2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！


