2025FFFH (FiFFRIEMHIAR)

RO A

= ik
EFREEEITERC(SE). ERESHTRINERFERHMFRERC
ITENEZEERAER

20255£12H08H

KEULAIES

AT ERYSEEY

mRE T T AEARRIAT R R 6 BUETE B F= A48 2 A I 46
1RBULRYIES (typed language)

R T ERBLELABNIES

mRBA X, BOFEFHEGEARTAHISHAZE, BITHAIE EHIMIHEF
ARZFEEULANIES (untyped language)

m R EZ447% B && 5, FmJavaScript. Perl

RERYF R N A

AFHSENE X Pt - p—
AFREN RS &R —
m 5 935 6) 69 80i% LR HHA A
m XA . XKE EEHES

617 3

2RBIRIAT,
m XA B4
2 SRBIEN
m R ENF LT EN
22XBEE
miE R SRR
R AT
A E{thElR =

EiX=: FEMR{RE
tHRIAYKE

BR=: EX—HiZiH
N EIEasERE
N ESFEREER

%ﬂ%ﬁﬁ (Type expression)

ARBINUAREZN—ER7D, Bt ES4aY
EELITXE, DNRFPIED, SKEFE—ARIED
P->D:;S
D—>D;D|id: T

T — boolean | integer | array [num] of 7| Tr | T “>°T

%ﬂ%ﬁﬁ (Type expression)

ARBINJLARIRZER—ERS, BElLtRESSERY

EELITXXE, DINEFFRPiIET, SKE—RER
P->D:;S

Do>D;D|id: T |;Ee+||ma|

T — boolean | integer | array [num] of 7| Tr | T “>°T

| |
' | ‘ |

EARKH BERHETAGHEE

%ﬂ%ﬁ‘.ﬁ (Type expression)

QB RBIERBIRIA
m /nteger
m real
" char [fremiase
m boolean L (ERER

m type error [/ %% XA

mvoid /[KA
Eﬁ%%ﬂ}

%ﬂ%ﬁiﬁ (Type expression)

AEARRBIERBIRIAT
AAJARBIRIA iR, RBBERBIREL
ERBMERF(type constructor){ERFHBIREN oI LIARFTAYSEE
FAT,
m A RXAMEH T array
m 4 X B Mie H T pointer
B FREMRERBHMEH T
R RXAMEL T
miL R RXAMEH T record

> ZAARRENG, Ny, oo N RS 89 £ £ KTy, Ty, o T, W recoral(NqxT)x(NyxT,)
%o x(NoxT)) 4L £ 8 & ik X

1RBIFRIAT,
m KA G4
mE i T
m &R FNFLFEN
WE S g =
n ik S MRS ERA
KR A H 6 E &
S EBENR =

BiR—: Feiitimidss
B

EiX=: FEMR{RE
tHRIAYKE

BR=: EX—HiZiH
N EIEasERE
N ESFEREER

ZEFIFNY (Structural equivalence)

AN RERENR2ERE (FXREEN)
XA R R X —H
AR XRBEHEFERTHRNTEREX

type link = Tcell;

var next : link;
last : link;
p :Tcell

AN

q. r :Tcell;

10

ZEFFY (Structural equivalence)

AN REREN 2R (HFTRERRT)

ABREEN, BElIMEXNREREANMEN], AEREA<2HERE
(SRBIEXFTIAAD)

type link = Tcell;
var next : link; XS TRARE, B
. IR A SRR

last : link:

p :Tcell;

q.r :Tcell; next, last, p, qFIrE& S

11

ZEFFY (Structural equivalence)

function sequiv(s, 8 : boolean

{if s70 t EtHEIINEZASEEthen
return true

else if s== arra)(s,, s,) and t == arra)(t,, t,) then
return sequiv(s,, £,) and sequiv(s,, %)

elseif s== s, x s, and t== ¢x £ then
return sequiv(s,, £,) and sequiv(s,, %)

else if s == pointer(s;) and t == pointer(t,) then
return sequiv(s,, £,)

elseifs==s5,—> s andt == ¢ > ¢ then
return squiv(s;, ;) and sequiv(s,, t,)

else return false

} 12

BB RERERE— I IR AIRISE
AR REIRER B FHFMAIAMNS
JCRIEZCOEE B X0
m RHAT L FRIZIAIE RSN

13

AIEBANRERERE—1 I XARYSE

QRN RBIRANBRFFMZAMNS
mEMRBRGERALA
m RBEAT L F R LM FH
type link = Tcell; XA &KX
var next :link; link nextfelast. % FFH
last :link; link P, Q%‘:’r/g?%ﬂl\

p : Tcell; pointer (cell)

q,r :Tcell; pointer(cell)

14

1BI3E M AYRE

1Where: Linked Lists, Trees, etc
1How: records containing pointers to similar records

cell = record

type link = T cell ;
cell = record / \
info : integer ; / \ / \
next : link info integer next pointer
end; ‘
(=SSR

DAG cell

15

1BI3E M AYRE

1Where: Linked Lists, Trees, etc
1How: records containing pointers to similar records

cell = record <
type link = T cell ; | N
cell = record / \
info : integer ; / A / \
next : link info integer next pomter\j
d;
e TETT

SIANR, SHEFMFIRE
BagEAELE

16

CIEESHREITEN RIS

\GEETISIER (SHI) LOMIFEAREREHEN, Hossam
MESTZ, [RRE AR

cell = record

/\
/\ O\

info integer next pointer

cell

17

{£X86/Linuxtllzs L, %

incompatible types in return

typedef int A1[10];
typedef int A2[10];
A1l a;

typedef struct {int i;}S1;
typedef struct {int i;}S2;

S1s;

ECGESR, SHMNGIIMERINIERE, AL LHEFB21 BB RENER,

S11MRBENER?

1¥an

RERE—1THER:

A2 *fun1() {
return(&a);

}
S2 fun2() {

return(s);

)

mES3:itH 3y on
m ARG
AZEBIFEAN
m B FNALFFN
1ZEBIEE
ik FEFE SRR
m A e T
A EthEIR =

BEiX—: Fealitimidss
BEH

BEiX=: HEM1IRE
tREIRI R

BR=: EX—HiZiH
N EIEasERE
N ESFEREER

19

P—>D;$
D> D;D|id: T

T — boolean | integer | array [num] of T|
T\ T > T
S—id:= E|if Ethen S| while £Edo S| S; S
E— truth | num |id | Emod E| E[£] |
EV | E(E)

51
i:integer;
j : integer;

j :=1imod 2000

20

KRG E—FEBEIE)

D— D, D
D-id: T {addtype (id.entry, T type)}
addtype: IBRB(ERENGSE

21

KRUGE —— EIHIED

D— D, D

D-id: T {addtype (id.entry, T type)}
I — boolean {7 type = boolean}

T — integer {7 type = integen}

T 1T {T.type = pointer(T,.type)}

22

KRUGE —— EIHIED

D— D, D

D-id: T {addtype (id.entry, T type)}
I — boolean {7 type = boolean}

T — integer {7 type = integen}

T 1T {T.type = pointer(T,.type)}
I — array [num] of T.

{T.type = array(num.val, T,.type)}

23

KRUGE —— EIHIED

D—- D, D
D->id: T {addtype (id.entry, T type)}
T — boolean {T.type = boolean}
T — integer {Itype = integen
T 1T, {T.type = pointer(T,.type)}
I — array [num] of T
{T.type = array(num.val, T,.type)}
T-T > T, {lLtpe= T.type— T,.type}

24

RENE—FRAI

E — truth {E.type = boolean }
E—> num {E.type = integen}
EF—id {E.type = lookup(id.entry)}

25

REWE—RAI

E — truth {E.type = boolean }

E—> num {E.type = integen}

EF—id {E.type = lookup(id.entry)}
E— E, mod £

{E.type = if E,.type == integer and
E,. type == integer then integer

else type error}

26

RENE—FRAI

E— E [E] {Etype = if E,. type == integer and
E,. type == array(s, f) then ¢

else type error})

27

REWE—RAI

E— E [E] {Etype = if E,. type == integer and
E,. type == array(s, f) then ¢
else type error})
E— ET {E.type = if E,.type == pointer(D then ¢t

else type error})

28

REWE—RAI

E— E [E] {Etype = if E,. type == integer and
E,. type == array(s, f) then ¢
else type error})
E— ET {E.type = if E,.type == pointer(D then ¢t
else type error})
E— E (E){E type=if E, . type == sand
E,. type== s— t then ¢

else type error})

29

REWNE—F0)

S—id:= E{if (id.type == E.type && E.type <
{boolean, integen) S.type = void:

else S.type = type error}

30

KT 5

S—id:= E{if (id.type == E.type && E.type <
{boolean, integen) S.type = void:

else S.type = type error}
S — if Ethen §, {S. type = if E. type == boolean
then §,. type

else type error})

31

KAGE B

S — while £do S,
{S.type = if E.type == boolean then S,. type

else type error}

32

REWNE—F0)

S — while £do S,
{S.type = if E.type == boolean then S,. type
else type error}
5S> 5,5,
{S. type = if S,.type == void and
S,.type == void then void

else type error}

33

RENE—IEF

P> DS
{P. type = if S.type == void then void

else type error}

34

mES3:itH 3y on
m XAy
AZEBIFEAN
m R EFNFLFEFN
1ZEBIEE
miE AR FEE TR
m A e T
A EthEIR =

BEiX—: Fealitimidss
BEH

BEiX=: HEM1IRE
tREIRI R

BR=: EX—HiZiH
N EIEasERE
N ESFEREER

35

RIS FRIEH,

1EBEHES
R SAAL, BEEANG] A EGA IR

af5lan:
miEHEF+TATARAREAAE, "+"EE3NIPLF, AR NEZIHHENLF

AEBHAYER
R EERFFHII AL, HEURHRE R

36

FRIAI I n]ge3EBIeE

15 AdaiFSHIEER:

i _n

function “x*" (i, j : integer) return complex;

1 N

function “+” (x, y: complex) return complex;

(ESE-ER, AJaERIEBIEE:

integer x integer — integer --IXEFEMAIZEE
integer x integer -» complex 2 % (3 %5)
complex x complex - complex B35z zZREE

FRIAINJEeREBIRS

APAREMAAG, FERBHEE
mAEHFNREXBRABE—WRAE, KPP ANEIBLET R
E-> E,(E,) { E.type = if E,.type == s and E,.type == s - t then t
else type error}
mAR R EXTREARGESLS (RBTRIE)

£ R R

E'—> E E'.types = E. types

E—id E. types = lookup(id. entry)

E— E, (E,) E. types = {t | E,. typesHhFE—"s,
{$18s - tIBTE,.types }

38

affl: k(3 + STIRERISKBIES

E: {1} E: {i}

| S |

{Ixil>lL,Ixl—>¢CCcxCc—>cC}

3 :{i) 5 : {1}

39

2RBIRIAT,
m XA B4
2 SRBIEN
m R ENF LT EN
22XBEE
miE R SRR
R AT
A E{thElR =

EiX=: FEMR{RE
tHRIAYKE

BR=: EX—HiZiH
N EIEasERE
N ESFEREER

40

Hiths B X ot

QIERRIEE
mIEHIRIE) L IMAE IR AL B AR T,
mFde, AECiEE Phbreakiz o) =43k & 0,361% 5 9 89 % J-while. for3 #switch
& a); T NREIRE

main() {

printf(“\n%Ild\n" ,gcd(4,12));
continue;

}

FIFRIRVIREEANT

example.c: In function ‘main’ :

example.c:3: continue statement not within a loop
41

Hiths B X ot

A ETFIHEXRISE
iR IR R A 7 W
mARIRAHEE B
AE—EEE
aSwitchiZ W4 X FERARAXARAEEL
R ERAAGTEREET AL

42

1 FRiFRRIE—TEEE RG] F

main() {

inti;

switch(i){

case 10: printf(“%d\n” , 10); break;
case 20: printf(“%d\n” , 20); break;
case 10: printf(“%d\n” , 10); break;

}

}

m SiF AR T .
switch.c: In function ‘main’ :
switch.c:6: duplicate case value

switch.c:4: this is the first entry for that value

43

2025FFFH (FiFFRIEMHIAR)

—ite3537/]
FIISE~BLR AP R !

= Wk
ExSEEITRERU(SIE). BERSITRIIERELEHFREHR 0
ITENEZEERAER

20255£12H08H

	幻灯片 1
	幻灯片 2: 类型化的语言
	幻灯片 3: 类型的两个典型应用
	幻灯片 4: 主要内容
	幻灯片 5: 类型表达式 (Type expression)
	幻灯片 6: 类型表达式 (Type expression)
	幻灯片 7: 类型表达式 (Type expression)
	幻灯片 8: 类型表达式 (Type expression)
	幻灯片 9: 主要内容
	幻灯片 10: 结构等价 (Structural equivalence)
	幻灯片 11: 结构等价 (Structural equivalence)
	幻灯片 12: 结构等价 (Structural equivalence)
	幻灯片 13: 名等价 (name equivalence)
	幻灯片 14: 名等价 (name equivalence)
	幻灯片 15: 递归定义的类型
	幻灯片 16: 递归定义的类型
	幻灯片 17: C语言中的递归定义的类型
	幻灯片 18: 例题
	幻灯片 19: 主要内容
	幻灯片 20: 一个简单的语言
	幻灯片 21: 类型检查——声明语句
	幻灯片 22: 类型检查——声明语句
	幻灯片 23: 类型检查——声明语句
	幻灯片 24: 类型检查——声明语句
	幻灯片 25: 类型检查——表达式
	幻灯片 26: 类型检查——表达式
	幻灯片 27: 类型检查——表达式
	幻灯片 28: 类型检查——表达式
	幻灯片 29: 类型检查——表达式
	幻灯片 30: 类型检查——语句
	幻灯片 31: 类型检查——语句
	幻灯片 32: 类型检查——语句
	幻灯片 33: 类型检查——语句
	幻灯片 34: 类型检查——程序
	幻灯片 35: 主要内容
	幻灯片 36: 函数和算符的重载
	幻灯片 37: 子表达式的可能类型集合
	幻灯片 38: 子表达式的可能类型集合
	幻灯片 39: 子表达式的可能类型集合
	幻灯片 40: 主要内容
	幻灯片 41: 其他静态语义分析
	幻灯片 42: 其他静态语义分析
	幻灯片 43: 例题
	幻灯片 44

