
2025年秋季学期《编译原理和技术》

静态类型检查

变量的类型

◼限定了变量在程序执行期间的取值范围和存储空间消耗

类型化的语言(typed language)

◼变量都被给定类型的语言

◼表达式、语句等程序构造的类型都可以静态确定，运行时不需要额外的操作

未类型化的语言(untyped language)

◼不限制变量值范围的语言,如JavaScript、Perl

类型化的语言

2

静态的语义分析

◼类型检查

中间代码生成

◼声明语句的翻译

◼数组寻址的翻译

◼类型转换

类型的两个典型应用

3

利用逻辑规则分析运算
分量的类型与运算符预

期是否匹配？

• 通过声明语句收集
变量或函数的类型

• 计算所占存储空间
• 分配相对地址
• 类型转换适配指令

选择

类型表达式

◼类型的结构

类型等价

◼结构等价和名字等价

类型检查

◼语法制导翻译方案实现

◼函数和算符的重载

其他知识点

主要内容

4

层次一：形式化描述类
型结构

层次二：判定两个类型
相同的依据

层次三：定义一组逻辑
规则检查语句或者表达
式中是否存在类型错误

类型可以是语法的一部分，因此也是结构的

类型表达式 (Type expression)

5

考虑以下文法，D代表声明语句，S代表一般语句

P → D ; S

D → D ; D | id : T

T → boolean | integer | array [num] of T | T | T ‘→’T

类型可以是语法的一部分，因此也是结构的

类型表达式 (Type expression)

6

考虑以下文法，D代表声明语句，S代表一般语句

P → D ; S

D → D ; D | id : T

T → boolean | integer | array [num] of T | T | T ‘→’T

基本类型 复杂且可组合的类型

数组 指针 函数

基本类型是类型表达式

◼ integer

◼ real

◼char

◼boolean

◼ type_error //出错类型

◼void //无类型

类型表达式 (Type expression)

7

语句的类型

在类型检查中
传递错误

基本类型是类型表达式

可为类型表达式命名，类名也是类型表达式

将类型构造算子(type constructor)作用于类型表达式可以构成新的类型
表达式

◼数组类型构造算子array

◼指针类型构造算子pointer

◼笛卡尔乘积类型构造算子

◼函数类型构造算子→

◼记录类型构造算子record

➢若有标识符N1, N2, …, Nn 以及对应的类型表达式T1, T2, …, Tn，则record((N1T1)(N2T2)
…(NnTn)) 也是类型表达式

类型表达式 (Type expression)

8

类型表达式

◼类型的结构

类型等价

◼结构等价和名字等价

类型检查

◼语法制导翻译方案实现

◼函数和算符的重载

其他知识点

主要内容

9

层次一：形式化描述类
型结构

层次二：判定两个类型
相同的依据

层次三：定义一组逻辑
规则检查语句或者表达
式中是否存在类型错误

两个类型表达式完全相同（当无类型名时）

◼类型表达式树一样

◼相同的类型构造符作用于相同的子表达式

type link = cell;

var next : link;

last : link;

p : cell;

q, r : cell;

结构等价 (Structural equivalence)

10

两个类型表达式完全相同（当无类型名时）

有类型名时，用它们所定义的类型表达式代换它们，所得表达式完全相同
(类型定义无环时)

type link = cell;

var next : link;

last : link;

p : cell;

q, r : cell;

结构等价 (Structural equivalence)

11

next, last, p, q和r结构等价

这里隐藏了递归检查，因
此暂时不考虑有环的情况

function sequiv(s, t) : boolean

{if s 和 t 是相同的基本类型then

return true

else if s == array(s1, s2) and t == array(t1, t2) then

return sequiv(s1, t1) and sequiv(s2, t2)

else if s == s1  s2 and t == t1 t2 then

return sequiv(s1, t1) and sequiv(s2, t2)

else if s == pointer (s1) and t == pointer(t1) then

return sequiv(s1, t1)

else if s == s1 → s2 and t == t1 → t2 then

return squiv(s1, t1) and sequiv(s2, t2)

else return false

}

结构等价 (Structural equivalence)

12

把每个类型名看成是一个可区别的类型

两个类型表达式名字等价当且仅当

◼它们是相同的基本类型

◼不进行名字代换就能结构等价

名等价 (name equivalence)

13

把每个类型名看成是一个可区别的类型

两个类型表达式名字等价当且仅当

◼它们是相同的基本类型

◼不进行名字代换就能结构等价

名等价 (name equivalence)

14

type link = cell;

var next : link;

last : link;

p : cell;

q, r : cell;

next和last名字等价

p, q和r名字等价

类型表达式

link

link

pointer(cell)

pointer(cell)

Where：Linked Lists, Trees, etc

How: records containing pointers to similar records

type link =  cell ;

cell = record

info : integer ;

next : link

end;

递归定义的类型

15

cell = record

，

: :

info pointernextinteger

cell

type link =  cell ;

cell = record

info : integer ;

next : link

end;
包含类型名的

DAG

Where：Linked Lists, Trees, etc

How: records containing pointers to similar records

type link =  cell ;

cell = record

info : integer ;

next : link

end;

递归定义的类型

16

type link =  cell ;

cell = record

info : integer ;

next : link

end;
将类型名替换

引入环，结构等价判定
有可能不终止

cell = record

，

: :

info pointernextinteger

C语言中的递归定义的类型

17

cell = record

，

: :

info pointernextinteger

cell

C语言对除记录（结构体）以外的所有类型使用结构等价，而记录类型用
的是名字等价，以避免类型图中的环

在X86/Linux机器上，编译器报告最后一行有错误：

incompatible types in return

typedef int A1[10]; | A2 *fun1() {

typedef int A2[10]; | return(&a);

A1 a; | }

typedef struct {int i;}S1; | S2 fun2() {

typedef struct {int i;}S2; | return(s);

S1 s; | }

在C语言中，数组和结构体都是构造类型，为什么上面第2个函数有类型错误，而
第1个函数却没有？

例题

18

类型表达式

◼类型的结构

类型等价

◼结构等价和名字等价

类型检查

◼语法制导翻译方案实现

◼函数和算符的重载

其他知识点

主要内容

19

层次一：形式化描述类
型结构

层次二：判定两个类型
相同的依据

层次三：定义一组逻辑
规则检查语句或者表达
式中是否存在类型错误

P → D ; S

D → D ; D | id : T

T → boolean | integer | array [num] of T |

T | T ‘→’T

S → id := E | if E then S | while E do S | S ; S

E → truth | num | id | E mod E | E [E] |

E | E (E)

一个简单的语言

20

例

 i : integer;

 j : integer;

 j := i mod 2000

D → D; D

D → id : T {addtype (id.entry, T.type)}

addtype：把类型信息填入符号表

类型检查——声明语句

21

D → D; D

D → id : T {addtype (id.entry, T.type)}

T → boolean {T.type = boolean}

T → integer {T.type = integer}

T → T1 {T.type = pointer(T1.type)}

类型检查——声明语句

22

D → D; D

D → id : T {addtype (id.entry, T.type)}

T → boolean {T.type = boolean}

T → integer {T.type = integer}

T → T1 {T.type = pointer(T1.type)}

T → array [num] of T1

{T.type = array(num.val, T1.type)}

类型检查——声明语句

23

D → D; D

D → id : T {addtype (id.entry, T.type)}

T → boolean {T.type = boolean}

T → integer {T.type = integer}

T → T1 {T.type = pointer(T1.type)}

T → array [num] of T1

{T.type = array(num.val, T1.type)}

T → T1 ‘→’ T2 {T.type = T1.type → T2.type }

类型检查——声明语句

24

E → truth {E.type = boolean }

E → num {E.type = integer}

E → id {E.type = lookup(id.entry)}

类型检查——表达式

25

E → truth {E.type = boolean }

E → num {E.type = integer}

E → id {E.type = lookup(id.entry)}

E → E1 mod E2

{E.type = if E1.type == integer and

E2. type == integer then integer

else type_error }

类型检查——表达式

26

E → E1 [E2] {E.type = if E2. type == integer and

E1. type == array(s, t) then t

else type_error }

类型检查——表达式

27

E → E1 [E2] {E.type = if E2. type == integer and

E1. type == array(s, t) then t

else type_error }

E → E1 {E.type = if E1.type == pointer(t) then t

else type_error }

类型检查——表达式

28

E → E1 [E2] {E.type = if E2. type == integer and

E1. type == array(s, t) then t

else type_error }

E → E1 {E.type = if E1.type == pointer(t) then t

else type_error }

E → E1 (E2) {E. type = if E2 . type == s and

E1. type == s → t then t

else type_error }

类型检查——表达式

29

S → id := E { if (id.type == E.type && E.type 

{boolean, integer}) S.type = void;

else S.type = type_error;}

类型检查——语句

30

S → id := E { if (id.type == E.type && E.type 

{boolean, integer}) S.type = void;

else S.type = type_error;}

S → if E then S1 {S. type = if E. type == boolean

then S1. type

else type_error }

类型检查——语句

31

S → while E do S1

{S.type = if E.type == boolean then S1. type

else type_error }

类型检查——语句

32

S → while E do S1

{S.type = if E.type == boolean then S1. type

else type_error }

S → S1; S2

{S. type = if S1.type == void and

S2.type == void then void

else type_error }

类型检查——语句

33

P → D; S

{P. type = if S.type == void then void

else type_error }

类型检查——程序

34

类型表达式

◼类型的结构

类型等价

◼结构等价和名字等价

类型检查

◼语法制导翻译方案实现

◼函数和算符的重载

其他知识点

主要内容

35

层次一：形式化描述类
型结构

层次二：判定两个类型
相同的依据

层次三：定义一组逻辑
规则检查语句或者表达
式中是否存在类型错误

重载符号

◼有多个含义，但在每个引用点的含义都是唯一的

例如：

◼加法算符+可用于不同类型，"+"是多个函数的名字，而不是一个多态函数的名字

重载的消除

◼在重载符号的引用点，其含义能确定到唯一

函数和算符的重载

36

例 Ada语言的声明：

function “” (i, j : integer) return complex;

function “” (x, y : complex) return complex;

使得算符重载，可能的类型包括：

integer  integer → integer --这是预定义的类型

integer  integer → complex

complex  complex → complex

子表达式的可能类型集合

37

2  (3  5)

(3  5)  z z是复型

以函数应用为例，考虑类型检查

◼在每个表达式都有唯一的类型时，函数应用的类型检查是：

E → E1(E2) { E.type = if E2.type == s and E1.type == s → t then t
else type_ error }

◼确定表达式可能类型的集合（类型可能不唯一）

子表达式的可能类型集合

38

产 生 式 语 义 规 则

E → E E.types = E. types

E → id E. types = lookup(id. entry)

E → E1 (E2) E. types = {t | E2. types中存在一个s，
使得s → t属于E1.types }

例：表达式3  5可能的类型集合

子表达式的可能类型集合

39

E: {i, c}

E : {i}

3 : {i}

E : {i}

5 : {i}

 :
{i  i → i, i  i → c, c  c → c }

类型表达式

◼类型的结构

类型等价

◼结构等价和名字等价

类型检查

◼语法制导翻译方案实现

◼函数和算符的重载

其他知识点

主要内容

40

层次一：形式化描述类
型结构

层次二：判定两个类型
相同的依据

层次三：定义一组逻辑
规则检查语句或者表达
式中是否存在类型错误

控制流检查

◼控制流语句必须使控制转移到合法的地方。

◼例如，在C语言中break语句使控制跳离包括该语句的最小while、for或者switch
语句；否则就报错。

main() {

printf(“\n%ld\n”,gcd(4,12));

continue;

}

 编译时的报错如下：

example.c: In function ‘main’:

example.c:3: continue statement not within a loop

其他静态语义分析

41

上下文相关检查

◼标识符没有声明

◼标识符重复声明

唯一性检查

◼Switch语句的分支常量表达式不能有重复

◼枚举类型的元素不能重复

其他静态语义分析

42

编译时的唯一性检查的例子

main() {

int i;

switch(i){

case 10: printf(“%d\n”, 10); break;

case 20: printf(“%d\n”, 20); break;

case 10: printf(“%d\n”, 10); break;

}

}

◼ 编译时的报错如下：

switch.c: In function ‘main’:

switch.c:6: duplicate case value

switch.c:4: this is the first entry for that value

例题

43

2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！

	幻灯片 1
	幻灯片 2: 类型化的语言
	幻灯片 3: 类型的两个典型应用
	幻灯片 4: 主要内容
	幻灯片 5: 类型表达式 (Type expression)
	幻灯片 6: 类型表达式 (Type expression)
	幻灯片 7: 类型表达式 (Type expression)
	幻灯片 8: 类型表达式 (Type expression)
	幻灯片 9: 主要内容
	幻灯片 10: 结构等价 (Structural equivalence)
	幻灯片 11: 结构等价 (Structural equivalence)
	幻灯片 12: 结构等价 (Structural equivalence)
	幻灯片 13: 名等价 (name equivalence)
	幻灯片 14: 名等价 (name equivalence)
	幻灯片 15: 递归定义的类型
	幻灯片 16: 递归定义的类型
	幻灯片 17: C语言中的递归定义的类型
	幻灯片 18: 例题
	幻灯片 19: 主要内容
	幻灯片 20: 一个简单的语言
	幻灯片 21: 类型检查——声明语句
	幻灯片 22: 类型检查——声明语句
	幻灯片 23: 类型检查——声明语句
	幻灯片 24: 类型检查——声明语句
	幻灯片 25: 类型检查——表达式
	幻灯片 26: 类型检查——表达式
	幻灯片 27: 类型检查——表达式
	幻灯片 28: 类型检查——表达式
	幻灯片 29: 类型检查——表达式
	幻灯片 30: 类型检查——语句
	幻灯片 31: 类型检查——语句
	幻灯片 32: 类型检查——语句
	幻灯片 33: 类型检查——语句
	幻灯片 34: 类型检查——程序
	幻灯片 35: 主要内容
	幻灯片 36: 函数和算符的重载
	幻灯片 37: 子表达式的可能类型集合
	幻灯片 38: 子表达式的可能类型集合
	幻灯片 39: 子表达式的可能类型集合
	幻灯片 40: 主要内容
	幻灯片 41: 其他静态语义分析
	幻灯片 42: 其他静态语义分析
	幻灯片 43: 例题
	幻灯片 44

