
2025年秋季学期《编译原理和技术》

寄存器分配-图着色



寄存器是CPU中的稀有资源，如何高效的分配这一资源是一个至关重要的
问题。

寄存器分配

Frontend Optimizer Backend
Source
Code

Assembly
Code

Instruction
Selection

Instruction
Scheduler

Register
Allocation



图着色算法
◼最经典的寄存器分配算法之一

◼将寄存器分配问题转化为图的节点着色问题

◼该算法适用于复杂的控制流程和循环结构，但计算复杂度较高

寄存器分配



图着色算法
◼图中一共6个结点，被边相连的结点表示有相邻的关系

◼有相邻关系的结点不可以被染成同一种颜色

◼至少需要多少种颜色完成图着色？

图着色问题



假设一共有红绿蓝3种颜色可供选择，一个可能的染色的结果

若用3个颜色可完成着色，可以称此图为3可着色图

图着色问题



判断图为k可着色图的算法
◼将度低于k的节点依次删除（同时有关的边也删除），节点入栈

◼重复第一步，直到所有节点都被删除，则为k可着色图

图着色问题

将度低于3的结点删除，同时有关的边也进行删除，
加入栈中，这里删除了a

重复操作，直到所有结点放入了栈中
此时图已经为空



图着色
◼从栈中将结点取出，取出时进行着色

◼如果两者有连接关系，那么不可以染成同样的颜色

图着色问题



寄存器分配也是类似思路

图中的节点可以被看作是中间代码中的虚拟寄存器/变量

颜色可以被看作是物理寄存器，每个物理寄存器对应一种颜色

分配物理寄存器就是对结点进行着色

利用图着色进行寄存器分配的思路

边代表了两个虚拟寄存器
不可以分配到同一个物理
寄存器



算法步骤
◼建立图

➢根据每个变量的活跃区间建立寄存器干涉图

➢图中节点对应其活跃变量，活跃区间互相冲突的节点之间建立边

寄存器图着色

建立图 简化图 溢出节点 染色



算法步骤
◼简化图

➢图中的节点遍历

➢如节点度少于k（可用的物理寄存器的数量），则将节点及邻边从图删除，并将节点压入栈

➢重复步骤直到图中所有节点度数大于等于k，或者得到空图为止

寄存器图着色

建立图 简化图 溢出节点 染色



算法步骤
◼溢出节点

➢如简化最后图非空，需要选择一节点溢出（放入内存）

◆节点选择

✓比较简单的实现是选择删除在代码中出现次数较少的节点

✓根据综合代价选择

➢重新建立图和化简图

寄存器图着色

建立图 简化图 溢出节点 染色



算法步骤
◼染色

➢算法按栈中节点出栈顺序进行图着色

➢图中的所有节点染上有且只有一种颜色

寄存器图着色

建立图 简化图 溢出节点 染色



假设系统存在5个寄存器

寄存器图着色示例

int main(void){
int a; int b;
int c; int d;
int e; int f;
int g; int h;
int k;
a = 1;
b = 2;
c = 3;
d = a+b;
e = 2*d;
g = d+e;
k = d+e+2;
f = e+d/2;
h = k+g+d+f;
return d;

}

target triple = "x86_64-pc-linux-
gnu"
declare i32 @input()
declare void @output(i32)
declare void @outputFloat(float)
declare void @neg_idx_except()
define i32 @main() {
label_entry:
0 %op11 = add i32 1, 2
2 %op13 = mul i32 2, %op11
4 %op16 = add i32 %op11, %op13
6 %op19 = add i32 %op11, %op13
8 %op20 = add i32 %op19, 2
10 %op23 = sdiv i32 %op11, 2
12 %op24 = add i32 %op13, %op23
14 %op27 = add i32 %op20, %op16
16 %op29 = add i32 %op27, %op11
18 %op31 = add i32 %op29, %op24
20 ret i32 %op11
}

C代码 IR



变量活跃区间

寄存器图着色示例
target triple = "x86_64-pc-linux-
gnu"
declare i32 @input()
declare void @output(i32)
declare void @outputFloat(float)
declare void @neg_idx_except()
define i32 @main() {
label_entry:
0 %op11 = add i32 1, 2
2 %op13 = mul i32 2, %op11
4 %op16 = add i32 %op11, %op13
6 %op19 = add i32 %op11, %op13
8 %op20 = add i32 %op19, 2
10 %op23 = sdiv i32 %op11, 2
12 %op24 = add i32 %op13, %op23
14 %op27 = add i32 %op20, %op16
16 %op29 = add i32 %op27, %op11
18 %op31 = add i32 %op29, %op24
20 ret i32 %op11
}

变量 活跃区间

%op11 [1,21)

%op13 [3,13)

%op16 [5,15)

%op19 [7,9)

%op20 [9,15)

%op23 [11,13)

%op24 [13,19)

%op27 [15,17)

%op29 [17,19)



寄存器图着色示例

建立干涉图

变量 活跃区间

%op11 [1,21)

%op13 [3,13)

%op16 [5,15)

%op19 [7,9)

%op20 [9,15)

%op23 [11,13)

%op24 [13,19)

%op27 [15,17)

%op29 [17,19)



化简图
◼删除%op19

寄存器图着色示例



化简图
◼删除%op19

◼删除%op23

寄存器图着色示例



化简图
◼删除%op19

◼删除%op23

◼删除%op27

寄存器图着色示例



化简图
◼删除%op19

◼删除%op23

◼删除%op27

◼删除%op29

寄存器图着色示例



化简图
◼删除%op19

◼删除%op23

◼删除%op27

◼删除%op29

◼再将%op13，%op16，%op20，%op24，%op11删除，并压入栈中

◼最后得到一个空图

寄存器图着色示例



染色
◼按照入栈的

%op23

%op27

%op29

%op13

%op16

%op20

%op24

%op11的出栈顺序

相邻节点不赋予相同颜色的规则

进行着色，可以得到一张5-着色图

寄存器图着色示例



假设系统存在5个寄存器

寄存器图着色示例2

int main(void){
int a; int b;
int c; int d;
int e; int f;
int g; int h;
int k; int i;
a = 1; b = 2;
c = 3;
d = a+b;
e = 2*d;
g = d+e;
k = d+e+2;
i = d+e/2;
f = e+d/2;
h = k+g+d+f+i;
return d;

}

target triple = "x86_64-pc-linux-gnu"
declare i32 @input()
declare void @output(i32)
declare void @outputFloat(float)
declare void @neg_idx_except()
define i32 @main() {
label_entry:
0 %op12 = add i32 1, 2
2 %op14 = mul i32 2, %op12
4 %op17 = add i32 %op12, %op14
6 %op20 = add i32 %op12, %op14
8 %op21 = add i32 %op20, 2
10 %op24 = sdiv i32 %op14, 2
12 %op25 = add i32 %op12, %op24
14 %op28 = sdiv i32 %op12, 2
16 %op29 = add 732 %op14, %op28
18 %op32 = add i32 %op21, %op17
20 %op34 = add i32 %op32, %op12
22 %op36 = add i32 %op34, %op29
24 %op38 = add i32 %op36, %op25
26 ret i32 %op12
}

C代码 IR



变量活跃区间

寄存器图着色示例2 target triple = "x86_64-pc-linux-gnu"
declare i32 @input()
declare void @output(i32)
declare void @outputFloat(float)
declare void @neg_idx_except()
define i32 @main() {
label_entry:
0 %op12 = add i32 1, 2
2 %op14 = mul i32 2, %op12
4 %op17 = add i32 %op12, %op14
6 %op20 = add i32 %op12, %op14
8 %op21 = add i32 %op20, 2
10 %op24 = sdiv i32 %op14, 2
12 %op25 = add i32 %op12, %op24
14 %op28 = sdiv i32 %op12, 2
16 %op29 = add 732 %op14, %op28
18 %op32 = add i32 %op21, %op17
20 %op34 = add i32 %op32, %op12
22 %op36 = add i32 %op34, %op29
24 %op38 = add i32 %op36, %op25
26 ret i32 %op12
}

变量 活跃区间
%op12 [1,27)
%op14 [3,17)
%op17 [5,19)
%op20 [7,9)
%op21 [9,19)
%op24 [11,13)
%op25 [13,25)
%op28 [15,17)
%op29 [17,23)
%op32 [19,21)
%op34 [21,23)
%op36 [23,25)



建立干涉图

寄存器图着色示例2

op12

op14

op17

op20 op21

op24 op25

op28 op29 op32 op34 op36



化简图
◼将度数小于5的节点

%op20，%op24，%op29，

%op32，%op34，%op36

依次从图中删除

寄存器图着色示例2



溢出节点
◼计算代价

◼选择op25溢出

寄存器图着色示例2
target triple = "x86_64-pc-linux-gnu"
declare i32 @input()
declare void @output(i32)
declare void @outputFloat(float)
declare void @neg_idx_except()
define i32 @main() {
label_entry:

%op25 = alloca i32 ;记录变量在栈上位置
0 %op12 = add i32 1, 2
2 %op14 = mul i32 2, %op12
4 %op17 = add i32 %op12, %op14
6 %op20 = add i32 %op12, %op14
8 %op21 = add i32 %op20, 2
10 %op24 = sdiv i32 %op14, 2
12 %op39 = add i32 %op12, %op24

store i32 %op39, i32* %op25 ;保存变量到栈上
14 %op28 = sdiv i32 %op12, 2
16 %op29 = add 732 %op14, %op28
18 %op32 = add i32 %op21, %op17
20 %op34 = add i32 %op32, %op12
22 %op36 = add i32 %op34, %op29

%op40 = load i32, i32* %op25 ;从栈上读取数据
24 %op38 = add i32 %op36, %op40
26 ret i32 %op12
}



建立干涉图

化简图

寄存器图着色示例2

op12

op14

op17

op20 op21

op24

op28 op29

op32 op34 op36

op40
op39



染色

寄存器图着色示例2



2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！


	幻灯片 1
	幻灯片 2: 寄存器分配
	幻灯片 3: 寄存器分配
	幻灯片 4: 图着色问题
	幻灯片 5: 图着色问题
	幻灯片 6: 图着色问题
	幻灯片 7: 图着色问题
	幻灯片 8: 利用图着色进行寄存器分配的思路
	幻灯片 9: 寄存器图着色
	幻灯片 10: 寄存器图着色
	幻灯片 11: 寄存器图着色
	幻灯片 12: 寄存器图着色
	幻灯片 13: 寄存器图着色示例
	幻灯片 14: 寄存器图着色示例
	幻灯片 15: 寄存器图着色示例
	幻灯片 16: 寄存器图着色示例
	幻灯片 17: 寄存器图着色示例
	幻灯片 18: 寄存器图着色示例
	幻灯片 19: 寄存器图着色示例
	幻灯片 20: 寄存器图着色示例
	幻灯片 21: 寄存器图着色示例
	幻灯片 22: 寄存器图着色示例2
	幻灯片 23: 寄存器图着色示例2
	幻灯片 24: 寄存器图着色示例2
	幻灯片 25: 寄存器图着色示例2
	幻灯片 26: 寄存器图着色示例2
	幻灯片 27: 寄存器图着色示例2
	幻灯片 28: 寄存器图着色示例2
	幻灯片 29

