
2025年秋季学期《编译原理和技术》

数据流优化之GVN

公共子表达式删除-回顾

2

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t6]

t7 := 4 * i

t8 := 4 * j

t9 := a[t8]

a[t7] := t9

t10 := 4 * j

a[t10] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

快排中的公共子表达式删除

3

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t6]

t7 := 4 * i

t8 := 4 * j

t9 := a[t8]

a[t7] := t9

t10 := 4 * j

a[t10] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

局部公共
子表达式

B3

快排中的公共子表达式删除

4

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t6]

t7 := 4 * i

t8 := 4 * j

t9 := a[t8]

a[t6] := t9

t10 := 4 * j

a[t8] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

快排中的公共子表达式删除

5

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t6]

t8 := 4 * j

t9 := a[t8]

a[t6] := t9

a[t8] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

快排中的公共子表达式删除

6

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t6]

t8 := 4 * j

t9 := a[t8]

a[t6] := t9

a[t8] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

全局公共
子表达式

快排中的公共子表达式删除

7

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t2]

t8 := 4 * j

t9 := a[t4]

a[t2] := t9

a[t4] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

全局公共
子表达式

快排中的公共子表达式删除

8

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := a[t2]

t8 := 4 * j

t9 := a[t4]

a[t2] := t9

a[t4] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

全局公共
子表达式

快排中的公共子表达式删除

9

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

t6 := 4 * i

x := t3

t8 := 4 * j

t9 := t5

a[t2] := t9

a[t4] := x

goto B2

t11 := 4 * i

x := a[t11]

t12 := 4 * i

t13 := 4 * n

t14 := a[t13]

a[t12] := t14

t15 := 4 * n

a[t15] := x

B3

全局公共
子表达式

快排中的公共子表达式删除

10

i := m −1

j := n

t1 := 4 * n

v := a[t1]

i := i + 1

t2 := 4 * i

t3 := a[t2]

if t3 > v goto B2

B1

B2

j := j −1

t4 := 4 * j

t5 := a[t4]

if t5 > v goto B3

if i >= j goto B6

B4

B5 B6

x := t3

a[t2] := t5

a[t4] := x

goto B2

x := t3

t14 := a[t1]

a[t2] := t14

a[t1] := x

B3

最终效果

关键在于冗余代码的识别

◼在程序点p和到达p的路径l，x = e，在l上p之前，是否存在一个与e计算结果相同的

子表达式e’

通过值编号value numbering方法识别

全局值编号global value numbering需要借助数据流分析方法

如何实现冗余代码的删除？

11

考虑以下基本块代码

冗余计算是 a + 37 和 x + 42

最后两条指令的计算可以删除，直接用前面的x和y来代替

值编号 Value Numbering

12

x = a + 37

y = x + 42

x = a + 37

y = x + 42

转变成静态单赋值格式SSA

每一次赋值产生一个新的变量

每一次引用使用唯一确定的变量

◼ x2 = x1; y2 = y1

◼如何识别？

值编号 Value Numbering

13

x = a + 37

y = x + 42

x = a + 37

y = x + 42

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

在SSA中，为每一个变量或表达式的结果分配一个值编号vi

值编号 Value Numbering

14

x = a + 37

y = x + 42

x = a + 37

y = x + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

在SSA中，为每一个变量或表达式的结果分配一个值编号vi

值编号 Value Numbering

15

x = a + 37

y = x + 42

x = a + 37

y = x + 42

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

v2 + 42: v3 //x1 + 42

y1: v3

在SSA中，为每一个变量或表达式的结果分配一个值编号vi

值编号 Value Numbering

16

x = a + 37

y = x + 42

x = a + 37

y = x + 42

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

v2 + 42: v3 //x1 + 42

y1: v3

v1 + 37：v2 // a + 37

x2：v2

在SSA中，为每一个变量或表达式的结果分配一个值编号vi

值编号 Value Numbering

17

x = a + 37

y = x + 42

x = a + 37

y = x + 42

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

v2 + 42: v3 //x1 + 42

y1: v3

v1 + 37：v2 // a + 37

x2：v2

v2 + 42：v3 // x2 + 42

y2: v3

在SSA中，为每一个变量或表达式的结果分配一个值编号vi

后面的值用前面的相同值编号的计算结果替代

值编号 Value Numbering

18

x = a + 37

y = x + 42

x = a + 37

y = x + 42

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

v2 + 42: v3 //x1 + 42

y1: v3

v1 + 37：v2 // a + 37

x2：v2

v2 + 42：v3 // x2 + 42

y2: v3

几个概念

◼每一个a; 37; a + 37; x1 + 42都是表达式

◼每一个v1; v1 + 37; v2 + 42都是值表达式

◼每一个集合{v1, a}; {v2, x1, v1+37}; 都

是一个等价类 equivalence class，记为C

◼在程序点p，所有等价类的集合P={C1, C2,

C3, …, Cn}叫做一个分区partition

值编号 Value Numbering

19

x1 = a + 37

y1 = x1 + 42

x2 = a + 37

y2 = x2 + 42

a：v1

v1 + 37：v2 // a + 37

x1：v2

v2 + 42: v3 //x1 + 42

y1: v3

v1 + 37：v2 // a + 37

x2：v2

v2 + 42：v3 // x2 + 42

y2: v3

把上述在基本块内部的value numbering扩展到全程序，跨基本块

全局值编号 Global Value Numbering

20

x = a+1 x = b + 1

y = x + 1

难点在于如何处理多条路径的汇聚？也就是说一个基本块有多个前驱节点
的时候，如何值编码？

全局值编号 Global Value Numbering

21

x = a+1 x = b + 1

y = x + 1

难点在于如何处理多条路径的汇聚？也就是说一个基本块有多个前驱节点
的时候，如何值编码？ -> 引入phi值表达式

全局值编号 Global Value Numbering

22

x1 = a+1 x2 = b + 1

x3 = 𝜙(x1, x2)
y1 = x3 + 1

难点在于如何处理多条路径的汇聚？也就是说一个基本块有多个前驱节点
的时候，如何值编码？ -> 引入phi值表达式

全局值编号 Global Value Numbering

23

a: v1
v1+1: v2
x1: v2

b: v3
v3 + 1: v4
x2:v4

𝜙3 v2, v4 : v5
x3: v5
v5 + 1: v6
y1: v6

B0

B1 B2

B3

难点在于如何处理多条路径的汇聚？也就是说一个基本块有多个前驱节点
的时候，如何值编码？ -> 引入phi值表达式

全局值编号 Global Value Numbering

24

a: v1
v1+1: v2
x1: v2

b: v3
v3 + 1: v4
x2:v4

𝜙3 v2, v4 : v5
x3: v5
v5 + 1: v6
y1: v6

B0

B1 B2

B3

• B3成为join block
• 为phi指令引入了

phi值表达式 value
phi function，使
用值编号，明确
joinblock的位置

核心任务：沿着控制流图control flow graph，计算在每一个程序点
（或者说，基本块的开始和结尾处）的表达式等价类分区

这些等价类既包含普通的值表达式，有包含复杂的phi值表达式

数据流分析是关键！

全局值编号 Global Value Numbering

25

数据流值代表在任一程序点能观测到的所有可能程序状态集合的一个抽象

对于一个语句s

◼ s 之前的程序点对应的数据流值用 IN[s] 表示

◼ s 之后的程序点对应的数据流值用 OUT[s] 表示

对于一个基本块呢？

数据流分析模式

26

传递函数(transfer function) f

◼语句前后两点的数据流值受该语句的语义约束

◼若沿执行路径正向传播，则OUT[s] = fs(IN[s])

◼若沿执行路径逆向传播，则IN[s] = fs(OUT[s])

若基本块B由语句s1, s2, …, sn依次组成，则

◼ IN[si+1] = OUT[si], i = 1, 2, …, n−1

数据流分析模式

27

考虑的是在语句执行后输入输出之间的变化关系

❑IN[B]：紧靠基本块B之前的数据流值

❖ IN[B] = IN[s1]

❑OUT[B]：紧靠基本块B之后的数据流值

❖ OUT[B] = OUT[sn]

❑ fB :基本块B的传递函数

❖ 前向数据流： OUT[B] = fB (IN[B])

➢ fB = fn ◦ . . . ◦ f2 ◦ f1

❖ 逆向数据流： IN[B] = fB (OUT[B])

➢ fB = f1 ◦ . . . ◦ fn - 1 ◦ fn

基本块上的数据流模式

28

控制流约束

◼正向传播

IN[B] = ∪ P是B的前驱OUT[P]

◼逆向传播

OUT[B] = ∪ S是B的后继IN[S]

约束方程组的解通常不是唯一的

◼求解的目标是要找到满足这两组约束（控制流约束和迁移约束）的最“精确”解

基本块间的数据流分析模式

29

U 是汇合的意思，并不
一定代表并集，也可能

是交集等运算

P1 P2 Pi Pn

B

S1 S2 Si Sn

B

考虑的是在其他语句或块对于输入的影响和本次执行的
输出对其他语句和块的影响

正向传播，从前驱向后继结点传播信息，先算IN，再算OUT

数据流值，即状态

◼ IN/OUT：分别对应基本块入口处和出口处的等价类分区

传递函数f

◼对于每一条指令s，OUT[s] = f(IN[s])

约束方程组

◼ IN[B] = ∪ P是B的前驱OUT[P] //这里需要考虑一个join operator

◼OUT[B] = fB (IN[B]) //考虑到基本块内若干指令的f串起来

GVN的数据流分析方法

GVN 算法发展

31

Kildall ‘73
Complete
Non-SSA
Exponential explosion

AWZ ‘88
Incomplete
SSA

RKS ’99, Gargi ‘02, Gulwani ‘04
polynomial time algorithm
incomplete

Rekha R. Pai’15 (Lab4-2)
polynomial time algorithm
SSA
complete

参考：Detection of Redundant Expressions: A Complete and Polynomial-Time Algorithm in SSA

程序及IR假设

◼假设程序是SSA IR格式

◼流图中有entry和exit基本块，均为空

◼每个基本块至多有两个前驱结点

join block

◼有两个前驱的基本块

基本概念

32

表达式expression，有如下形态

◼常量

◼变量

◼𝑥⨁𝑦，x, y是常量或变量， ⨁是二元运算符

◼𝜙(x1, x2)

基本概念

33

表达式等价 Herbrand equivalence [1]

◼如果两个表达式的运算符相同，且操作数也是Herbrand等价的，那么他们是

Herbrand等价的。

◼仅考虑结构等价，递归判断

对phi表达式的等价判断需要考虑每条路径等价，因此，需要对phi指令进
行额外处理

基本概念

34[1] source: The Value Flow Graph - A Program Representation for Optimal Program Transformations

https://link.springer.com/content/pdf/10.1007/3-540-52592-0_76.pdf

对phi指令的特殊处理：数据流分析中，phi 指令视作为 join block 的前
驱的copy指令进行处理

例如：

基本概念

35

bb1：
x1 = 1 + 1
br bb3

bb2:
x2 = 2 + 2
br bb3

bb3:
x3=phi(x1,x2)
...

bb1：
x1 = 1 + 1
x3 = x1
br bb3

bb2:
x2 = 2 + 2
x3 = x2
br bb3

bb3:
...

值表达式value expression，有如下形态

◼ vi⨁vj = {𝑥⨁𝑦 | x∈ 𝐶𝑖， y∈ 𝐶𝑗， Ci和Cj是两个等价类，分别对应值编号vi和vj} //简写

为ve

◼𝜙𝑘(vi, vj) // value phi function，简写为vpf

一个值表达式对应具有相同值编码的一组表达式的集合

基本概念

36

等价类equivalence class

◼vr, x1, y1

◼vs, z1, vr +1

◼vm, xn :𝜙k(vi, vj)

➢其中vr、vs、vm为值编号;

➢ x1、x2、y1、xn为变量；

➢ vr +1为值表达式，𝜙k(vi, vj)为phi值表达式

分区partition

◼ P = {· · ·, {vr, x1, y1}, {vs, z1, vr +1}, {vm, xn :𝜙k(vi, vj)}, · · · }

基本概念

37

Step1：通过前向数据流分析，算出每个基本块的出口数据流值（即
Partition）

Step2：通过基本块出口Partition，对基本块内冗余计算指令进行替换

GVN算法过程

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号Top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号Top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

detectEquivalences是数据
流分析的主体过程，通过多
次迭代获得稳定的Partition，

G为IR控制流图

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号Top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

GVN采用前向数据流分析，此
处对入口块Partition初始化

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号Top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

通过入口Partition ，以及转
移函数（transferFunction）
计算出B1的出口Partition

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号Top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

对每个基本块出口Partition初始化为
Top class（定义Top class：P1 =
Join(P1,Top), for any P1）

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

迭代主体，判断是否有基本
块的 POUT 发生了修改

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}

迭代过程中，如果一条语
句有两个前驱，使用Join
函数获得其入口Partition

数据流分析伪代码

detectEquivalences(G){
PIN[B1] = ∅ // “B1” is the first block
POUT[B1] = transferFunction(PIN[B1])
foreach block do

POUT[B] = ⊺ // 特殊符号top
while any POUT changes

foreach block B do
if B has two predecessors then

PIN[B] = join(POUT[P1], POUT[P2])
else

PIN[B] = POUT[P]
POUT[B] = transferFunction(PIN[B])

}
使用转移函数

（transferFunction）计算
当前基本块出口Partition

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

此处给出的是对于一条指令的转移函数
（transferFunction）x = e，x 代表变量，e代表表
达式，PIN[s]代表 x = e 指令的入口Partition；
对基本块的转移函数即为块内一连串指令的转移函数
的计算结果。

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

初始化 x = e 的出口Partition

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

将x从出口Partition中的等价类中删去，因为x被e重新
赋值，需要根据e来重新划分x到某个等价类中

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

通过e找到对应的值表达式

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

通过ve与PIN[s]，创建相应
phi值表达式（可能为空）,
即该表达式可能可以转化为
某个等价的phi函数，属于某
个phi值表达式

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

若ve或者vpf存在于POUT[s]中的某个等
价类Ci中，则将x加入对应等价类中

转移函数

数据流分析伪代码

transferFunction(x = e, PIN[s]){
POUT[s] = PIN[s]
if x in a class Ci of POUT[s] then

Ci = Ci - {x}
ve = valueExpr(e) // 计算/找到值表达式
vpf = valuePhiFunc(ve, PIN[s]) // 找到值phi表达式
if ve or vpf in a class Ci of POUT[s] then

Ci = Ci ∪ {x, ve} // 扩充Ci
else

// vn是新值编号, 添加新的等价类
POUT[s] = POUT[s] ∪ {vn, x, ve : vpf }

return POUT[s]
}

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

valuePhiFunc 是用来判断ve是否是phi值表达式，输
入项ve是值表达式，PIN[s]是语句s的入口Partition

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

此处判断ve是否可以表示成两条路径值表
达式的汇聚，为了简化理解，此处仅选取
了𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2)一种情况
进行判断

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

判断形如vi1 ⊕ vi2的表达式在当
前基本块的左前驱中是否存在相
应的值表达式，kl表示该基本块
的左前驱

判断形如vj1 ⊕ vj2的表达式在当
前基本块的右前驱中是否存在相
应的值表达式，kr表示该基本块
的右前驱

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

若前驱中不存在形如vi1 ⊕ vi2的
值表达式，则递归调用
valuePhiFunc判断vi1 ⊕ vi2在前
驱是否是Phi值表达式

对于vj1 ⊕ vj2以及右前驱同理

valuePhiFunc：判断当前ve是否等价某个phi值表达式

数据流分析伪代码

若不存在，则创建新的等价类，
vn为新等价类的值编号

valuePhiFunc(ve, PIN[s]){
if ve is of the form 𝜙k(vi1, vj1) ⊕ 𝜙k(vi2, vj2) then

vi = getVN(POUT[kl], vi1 ⊕ vi2) //左前驱
if (vi = = NULL) then

vi = valuePhiFunc(vi1 ⊕ vi2, POUT[kl])
vj = getVN(POUT[kr], vj1 ⊕ vj2) //右前驱
if (vj == NULL) then

vj = valuePhiFunc(vj1 ⊕ vj2, POUT[kr])

if vi, vj are non-NULL then
return 𝜙k(vi, vj) // vi, vj are non-NULL

else
return NULL

}

当前vi, vj都不为空，则该ve等价于某个
phi值表达式，用该phi值表达式表示ve

join函数

数据流分析伪代码

join(P1, P2){
P = {}
foreach pair of classes Ci ∈ P1 and Cj ∈ P2

Ck = Intersect(Ci, Cj)
P = P ∪ Ck

return P // Ignore when Ck is empty
}

join操作用于处理有两个前驱的
基本块的Partition汇聚问题，其
中P1，P2代表前驱基本块的出口
Partition

join函数

数据流分析伪代码

join(P1, P2){
P = {}
foreach pair of classes Ci ∈ P1 and Cj ∈ P2

Ck = Intersect(Ci, Cj)
P = P ∪ Ck

return P // Ignore when Ck is empty
}

在处理两个Partition的Join操作时，对每一对等价类做求
交集操作，并将交集结果加入Join输出Partition

Intersect函数:

◼对每一对等价类做求交集操作并在必要的情况下赋予新的值编号

数据流分析伪代码

Intersect(Ci, Cj){
Ck = Ci ∩ Cj // set intersection
if Ck ≠ ∅ and Ck does not have value number then

Ck = Ck ∪ {vk} // vk is new value number
Ck = (Ck - {vpf}) ∪ {𝜙b(vi, vj)}
// vpf is value 𝜙-function in Ck, vi ∈ Ci, vj ∈ Cj
// b is join block

return Ck
}

对于vi,vj非空的求交集结果，添加新的值
编号vk，以及添加phi值表达式：𝜙b(vi, vj)

借助phi指令向copy语句的转换，在数据流分析中，我们可以在下例中应
用

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

借助phi指令向copy语句的转换，在数据流分析中，我们可以在下例中应
用

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

对B1内每条语句执行转移函数（transferFunction）

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1]}

{}

对B1内每条语句执行转移函数（transferFunction）

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1], [v2,y1,v1+2]}

{}

对B1内每条语句执行转移函数（transferFunction）

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2]}

{}

对B1内每条语句执行转移函数（transferFunction）

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]}

{}

同理对B2内每条语句执行转移函数（transferFunction），得到B1B2的
出口Partition

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]} {[v3,x2,2+2,x3], [v4,y2,v2+2,y3]}

{}

使用join函数计算B3的PIN

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]} {[v3,x2,2+2,x3], [v4,y2,v2+2,y3]}

{}

使用join函数计算B3的PIN

通过Join操作得到B3的入口Partition

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]}

{}

{[v5,x3:phi(v1,v3)], [v6,y3:phi(v2,v4)]}

{[v3,x2,2+2,x3], [v4,y2,v2+2,y3]}

对B3指令执行TransferFunction，发现指令z的ve为phi(v1,v3)+2，执行
valuePhiFunc，得到z的vpf为phi(v1+2,v3+2)也即phi(v2,v4)，因此将z加入v6等
价类中

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

x1=1+1
y1=x1+2
x3=x1
y3=y1

x2=2+2
y2=x2+2
x3=x2
y3=y2

z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]} {[v3,x2,2+2,x3], [v4,y2,v2+2,y3]}

{}

{[v5,x3:phi(v1,v3)], [v6,y3:phi(v2,v4)]}

{[v5,x3:phi(v1,v3)], [v6,y3,z:phi(v2,v4)]}

依据每个基本块出口数据流分析结果，在原始代码上每个基本块内进行冗余删除，下
例中，z 与 y3 等价，可用 y3 替代 z，因此可以删除 z=x3+2 指令

GVN数据流分析举例演示

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B1 B2

B3

{}

{[v1,x1,1+1,x3], [v2,y1,v1+2,y3]} {[v3,x2,2+2,x3], [v4,y2,v2+2,y3]}

{}

{[v5,x3:phi(v1,v3)], [v6,y3:phi(v2,v4)]}

{[v5,x3:phi(v1,v3)], [v6,y3,z:phi(v2,v4)]}

x1=1+1
y1=x1+2

x2=2+2
y2=x2+2

x3=phi(x1,x2)
y3=phi(y1,y2)
z=x3+2

B0

B2

B3

B1

2025年秋季学期《编译原理和技术》

一起努力
打造国产基础系统软件体系！

